HITACHI

Variable Speed Technology

Pre-qualified compressor and drive solution with full operating envelope running capability

How variable speed compressors can lower energy consumption:

Changing speed to match cooling demand – increased efficiency at part load – reduced pressure pulses due to less start/stops – no start up peak current – stable temperature lowering energy costs.

Precise temperature control improves overall system performance

Varying the compressor speed to match changing demand precisely – improves system performance – achieved without using hot gas bypass valve – lowers machine cost – smooth and dynamic response to system demand – stable temperature control reduces operating costs.

Fewer system components – lowering machine costs:

Soft Start managed by the drive – relays included in the drive – built in crankcase heater – Contactor-less solution utilising built-in STO in the drive

Simple and Easy to Use – reducing testing and setup costs

Drive & compressors pre-qualified – parameter set confirmed with each OEM – reducing testing time – shortens time to market – simple plug-in copy & paste tool – lowers machine setup time – eliminates programming errors – Stationary autotune to quickly identify motor characteristics

Improved reliability - low maintenance cost

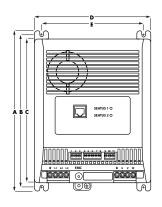
Wide speed range – less compressor start stops – built-in soft start – lowers mechanical stress – extending machine life – system reliability – lower maintenance costs

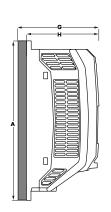
Drive protection of compressors

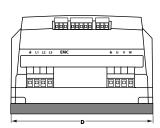
Minimum on/off time – re-start delay – Intelligent load management with speed reduction – configurable demagnetising peak current limit – over temperature – short circuit – safe torque off input – added system protection.

Matched compressor and drive combinations

Compressor	Drive Model	Power Source	Refrigerant	Min Cooling Capacity (W)	Max Cooling Capacity* (W)
ZS7798D1	CV-220070-3FHP	1x200-240V +/-10% 50/60Hz	R-404A	391	1816
ZS1216D1	CV-220120-3FHP	1x200-240V +/-10% 50/60Hz	R-404A	738	2901
ZS1520D1	CV-220120-3FHP	1x200-240V +/-10% 50/60Hz	R-404A	984	3507
ZS7798D1	CV-220070-3FHP	1x200-240V +/-10% 50/60Hz	R-448A/R-449A	391	1813
ZS1216D1	CV-220120-3FHP	1x200-240V +/-10% 50/60Hz	R-448A/R-449A	737	2896
ZS1520D1	CV-220120-3FHP	1x200-240V +/-10% 50/60Hz	R-448A/R-449A	982	3501


^{*} Performance at EN12900MT condition -10°C/45°C/SH=10K/SC=0K




Compressor 0 Φ118.5(Φ4.67") 130.4(5.13") 152(5.<u>98")</u> 353 ZS1520D1 348 ZS7798D1 302 116(4.57")

Variable speed drive heatsink version (1888 188888 1888) 226.3 8.9 215.2 В 8.5 201.4 7.9 С D 165.3 6.5 0000 E 144.8 5.7 F 182 7.2 6.96 G 177 71.7 2.82 Н 104.4 4.11 5.7 145

Variable speed drive coldplate version

	mm	in
Α	226.3	8.9
В	215.2	8.5
С	201.4	7.9
D	165.3	6.5
Е	90	3.5
F	37.7	1.48
G	113.9	4.48
Н	104.4	4.11
J	9.5	0.37

Single-Phase Input Models (200- 240Vac, 50/60Hz)	Rated Input Current	Rated Output Current	Output Power For Reference
CV-220070-1FHP	8.9 A	7.0 A	1.5 kW
CV-220120-1FHP	15.8 A	12.0 A	3.0 kW

Functionality	
3 - Stage start-up profile with 3 ramps	
Minimum On/Off/Restart Time	Yes
Safe Torque Off (STO)	
Motor De-magnetisation protection	
Drive and motor thermal management	
Intelligent Load Management Features	
Coldplate version available	
Low Harmonic - Compliant with EN 61000-3-2	
-20°C to +60°C ambient temperature operation (-4°F to +140°F)	
Analogue Input (0-20mA/4-20mA/0-10V)	
Digital Input and Relay Output	
Crankcase Heating Function built-in	
Control modes: analogue speed/PI regulator/Fieldbus	0-20mA/4-20mA/0-10Vdd
On-board Fieldbus Communication	Modbus RTU (RS485)

Product Certification				
CE	Low Voltage	2014/30/EU (EMC)		
	Directive (LVD)	2014/35/EU (LVD)		
		2006/42/EC (Machinery Directive)		
		2011/65/EU (RoHS 2)		
		2009/125/EC (Eco-design)		
	Product Safety	BSEN 61800-5-1:2007 &A1:2017		
	Electromagnetic Compatibility (EMC)	BSEN 61800-3:2018		
		BSEN 61000-3-2:2019+A1-2021		
	Ecodesign	BSEN 61/00-9-2:2017		
Functional Safety	Safe Torque Off (STO)	PL e / Cat. 3 according to EN ISO 13849-1		
outery	(010)	SIL 3 / SIL CL 3 of IEC 61800-5-2 / IEC 6158 / IEC 62061		
	Certification Body	TUV Rheinland		
cUL*	Product Safety	ANSI/UL 61800-5-1, CAN/CSA C22.2 No. 274		
	Certification Body	UL		

* Pending

Email: jpn-compressor-inq@jci-hitachi.com

HITACHI

compressors.hitachiaircon.com

Tel: +44 (0)1938 556868 **Email:** sales@invertekdrives.com

